Asset returns¶
Let \(p_t\) be the price of an asset at time t, and assume no dividend. One-period simple return or simple net return.
\[R_t = \frac{P_t}{P_t-1} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \]
Gross return
\[
1 + P_t = \frac{P_t}{P_{t - 1}}\ or P_t = P_{t-1}(1+P_t)
\]
Multi-period simple return or the k-period simple net return
\[R_t(k) = \frac{P_t}{P_{t-k}}-1\]
Gross return
\[1 + R_t(k) = \sum^{k -1 }_{j=0}(1+R_{t-j}) \]
Continues Compounding¶
from math import exp
def pay_interest(base, interest, payments):
return base * ( base + interest / payments) ** payments
def pay_interest_continue(base, interest, number_of_years):
return base * exp( interest * number_of_years)
pay_interest_continue(1, 0.1, 1)
1.1051709180756477
\[
R_t = log
\]
Log return¶
\[r_{pt} = \sum_{i = 1}{n}w_ir_{it}\]
Excess return¶
\[Z_t = R_t - R_{0t}, z_t = r_t - r_{0t}\]
where \(r_{0t}\) denotes the log return of a reference asset (e.g. risk-free interest rate) such as shortterm U.S. Treasury bill return, etc..